
A Survey of Parallelization Techniques for Multigrid Solvers∗†

Edmond Chow‡, Robert D. Falgout‡, Jonathan J. Hu§,

Raymond S. Tuminaro§, and Ulrike Meier Yang‡

Abstract

This paper surveys the techniques that are necessary for constructing computationally effi-

cient parallel multigrid solvers. Both geometric and algebraic methods are considered. We first

cover the sources of parallelism, including traditional spatial partitioning and more novel addi-

tive multilevel methods. We then cover the parallelism issues that must be addressed: parallel

smoothing and coarsening, operator complexity, and parallelization of the coarsest grid solve.

1 Introduction

The multigrid algorithm is a fast and efficient method for solving a wide class of integral and partial
differential equations. The algorithm requires a series of problems be “solved” on a hierarchy of
grids with different mesh sizes. For many problems, it is possible to prove that its execution time
is asymptotically optimal. The niche of multigrid algorithms is large-scale problems where this
asymptotic performance is critical. The need for high-resolution PDE simulations has motivated the
parallelization of multigrid algorithms. It is our goal in this paper to provide a brief but structured
account of this field of research. Earlier comprehensive treatments of parallel multigrid methods can
be found in [26, 68, 51] and Chapter 6 of [72].

2 Sources of Parallelism

2.1 Partitioning

Most simulations based on partial differential equations (PDEs) are parallelized by dividing the
domain of interest into subdomains (one for each processor). Each processor is then responsible
for updating the unknowns associated within its subdomain only. For logically rectangular meshes,
partitioning into boxes or cubes is straight-forward. For unstructured meshes there are several tools
to automate the subdivision of domains [54, 49, 34]. The general goal is to assign each processor
an equal amount of work and to minimize the amount of communication between processors by
essentially minimizing the surface area of the subdomains.

Parallelization of standard multigrid algorithms follows in a similar fashion. In particular, V-
or W-cycle computations within a mesh are performed in parallel but each mesh in the hierarchy
is addressed one at a time as in standard multigrid (i.e., the fine mesh is processed and then the
next coarser mesh is processed, etc.). For partitioning, the finest grid mesh is usually subdivided

∗This work was performed under the auspices of the U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. UCRL-BOOK-205864.

†Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

‡Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, L-560, P.O. Box 808, Liver-
more, CA 94551, USA ({echow,rfalgout,umyang}@llnl.gov).

§Computational Mathematics and Algorithms Department, Sandia National Laboratories, P.O. Box 969, MS 9159,
Livermore, CA 94551-0969, USA ({jhu,tuminaro}@sandia.gov) .

1

ignoring the coarse meshes∗. While coarse mesh partitioning can also be done in this fashion, it
is desirable that the coarse and fine mesh partitions “match” in some way so that inter-processor
communication during grid transfers is minimized. This is usually done by deriving coarse mesh
partitions from the fine mesh partition. For example, when the coarse mesh points are a subset of
fine mesh points, it is natural to simply use the fine mesh partitioning on the coarse mesh. If the
coarse mesh is derived by agglomerating elements and the fine mesh is partitioned by elements, the
same idea holds. In cases without a simple correspondence between coarse and fine mesh, it is often
easy and natural to enforce a similar condition that coarse grid points reside on the same processors
that contain most of the fine grid points that they interpolate [59]. For simulations that are to
run on many processors (i.e., much greater than 100), repartitioning the coarsest meshes (and even
mapping coarse meshes to a subset of processors) may be advantageous. This is especially the case
if the partitioning is not well-balanced on the fine mesh, leading to significant imbalance on coarse
meshes. Another challenge is when the discretization stencil grows on coarse meshes, as is common
with algebraic multigrid. Here, a subdomain on a coarse mesh may need to communicate with a
large number of processors to perform its updates, leading to significant overhead.

2.2 Specialized Parallel Multigrid Methods

Parallelization of standard multigrid methods yields highly efficient schemes so long as there is
sufficient work per processor on the finest mesh. When this is not the case, however, the parallel
efficiency of a multigrid algorithm can degrade noticeably due to inefficiencies associated with coarse
grid computations. In particular, the number of communication messages on coarse meshes is often
nearly the same as that on fine meshes (although messages lengths are much shorter). On most
parallel architectures, communication latencies are high compared to current processor speeds and
so coarse grid calculations can be dominated by communication. Further, machines with many
processors can eventually reach situations where the number of processors exceeds the number of
coarse mesh points implying that some processors are idle during these computations. To address
these concerns, specialized parallel multigrid-like methods have been considered. Most of these
highly parallel multigrid methods fit into four broad categories: concurrent iterations, multiple
coarse corrections, full domain partitioning, and block factorizations. The concurrent iteration
approach reduces the time per multigrid iteration by performing relaxation sweeps on all grids
simultaneously. The multiple coarse grid methods accelerate convergence by projecting the fine grid
system onto several different coarse grid spaces. Full domain partitioning reduces the number of
communication messages per iteration by only requiring processors to exchange information on the
finest and coarsest mesh. Block factorizations use a special selection of coarse and fine points to
reveal parallelism.

2.2.1 Concurrent Iterations

The principal element of concurrent iteration methods is the distribution of the original problem
over a grid hierarchy so that simultaneous processing of the grids can occur. In this way an iteration
can be performed more quickly. Methods which fall into this family include any kind of additive
multilevel method such as additive two level domain decomposition schemes [68] as well as additive
hierarchical basis type methods [86, 82]. In addition, to these well-known preconditioning schemes,
special multigrid algorithms have been proposed in [42, 43, 70, 75, 40]. All of these methods divide
the computation over meshes so that the individual problems do not greatly interfere with each other.
The general idea is to focus fine grid relaxations on high frequency errors and coarse grid relaxations
on low frequency errors. This can be done, for example, by first splitting the residual into oscillatory
and smooth parts. Then, the oscillatory part is used with the fine grid relaxation while the smooth
part is projected onto coarser meshes. Another way to reduce interference between fine and coarse
grid computations is to enforce some condition (e.g., an orthogonality condition) when individual

∗When uniform refinement is used to generate fine grid meshes, it is more natural to partition the coarse mesh
first. When adaptive refinement is used, it is useful to consider all meshes during partitioning.

2

solutions are recombined. Unfortunately, while these methods are interesting, convergence rates can
suffer, and the efficient mapping of the grid pyramid onto separate processors is a non-trivial task.
A more complete discussion of additive multigrid methods can be found in [12]. Theoretical aspects
of additive multigrid are established in [17].

2.2.2 Multiple Coarse Grids

Multiple correction methods employ additional coarse grid corrections to further improve conver-
gence rates. The key to success here is that these additional corrections must do beneficial work
without interfering with each other. To illustrate the idea, consider the simple case of one grid point
assigned to each processor for a three dimensional simulation. The number of mesh points is reduced
by eight within a standard hierarchy and so most processors are inactive even on the first coarse
mesh. However, if each time the current mesh spawns eight coarse grid correction equations then
all the processors are kept active throughout the V-cycle. While this situation of one grid point
per processor is academic, communication can so dominate time on coarse meshes within realistic
computations that additional subproblems can be formulated at little extra cost.

The most well-known algorithms in this family are due to Frederickson and McBryan [41] and
Hackbusch [47, 48]. Each of these algorithms was originally formulated for structured mesh com-
putations in two dimensions. In the Fredrickson and McBryan method the same fairly standard
interpolation and projection operators are used for all four subproblems. The stencils, however, for
the different problems are shifted, i.e., coarse points for the first subproblem are exactly aligned
with fine mesh points that correspond to the intersection of even numbered mesh lines in both the
x and y directions. Coarse points for the second subproblem coincide with the intersection of even
numbered mesh lines in the x direction and odd numbered mesh lines in the y direction. The third
and fourth subproblems are defined in a similar fashion. The similarities in the four subproblems
makes for a relatively easy algorithm to implement and analyze. The major benefit of the three
additional subproblems is that the combined coarse grid corrections essentially contain no aliasing
error†. This is due to a beneficial cancellation of aliasing error on the separate grids so that it does
not reappear on the fine grid [25]. Further extensions and analysis of this algorithm is pursued in
[81]. This work is closely related to methods based on the use of symmetries [35].

For a two dimensional problem, Hackbusch’s parallel multigrid method also uses four projections
for two dimensional problems. The stencils for the four different restriction operators are given by

R(1) = 1
8

1 2 1
2 4 2
1 2 1

 , R(2) = 1
8

−1 2 −1
−2 4 −2
−1 2 −1

 ,

R(3) = 1
8

−1 −2 −1
2 4 2

−1 −2 −1

 , R(4) = 1
8

1 −2 1
−2 4 −2
1 −2 1

(1)

and interpolation is taken as the transpose of restriction. The idea is to project the fine grid problem
into spaces associated with both high and low frequencies in the x and y directions, i.e., R(1) projects
into low frequency spaces in both the x and y directions, and R(2) projects into a space corresponding
to low frequency in the y direction but high frequency in the x direction. These projections into
both high and low frequency spaces can be useful when it is difficult to smooth in certain directions
(e.g., anisotropic problems) or they can be used to reduce the number of smoothing iterations on the
fine grid (as the high frequency subproblems can be used to reduce oscillatory error). It was shown
in [31] how to modify this method to be more robust for discontinuous coefficient problems and in
[30] how to apply this method with line relaxation on ocean modeling problems. Further extensions
and improvements are discussed in [7].

Another interesting and related idea is due to Mulder [62] which also uses multiple coarse grid
corrections to address anisotropic problems. In Mulder’s method, different coarse grid corrections

†Aliasing error arises when high frequency components are projected onto coarser grids. These frequencies get
mapped to low frequency and are often amplified on the coarse grid before returning to the fine mesh.

3

are built by applying semicoarsening‡ in different directions. That is, one coarse mesh is built
only coarsening in the x direction while another coarsens in the y direction. The idea is similar to
Hackbusch’s method in that the idea is to improve robustness by having multiple spaces which are
intended to address problems where smoothing is difficult in some direction. Improvements to this
idea have been presented in [63].

2.2.3 Full Domain Partitioning

Full domain partitioning takes a different approach that is intended to reduce the number of messages
that are sent during each multigrid cycle. The idea was motivated by adaptive grid refinement and
is described in the context of hierarchical basis methods [60, 61]. Here, we will give the general
flavor of the method in a more traditional multigrid setting.

To illustrate full domain partitioning consider a one-dimensional PDE discretized on a uniform
mesh. Instead of subdividing the mesh and assigning each piece to a different processor as shown in
Figure 1, an auxiliary mesh (with a corresponding discrete PDE operator) for each processor spans
the entire domain. A sample is shown for one particular processor in Figure 2. While each processor’s
mesh spans the entire domain, only a subregion of the processor’s mesh actually corresponds to the
fine grid mesh. Additionally, the resolution within a processor’s mesh decreases the further we are
from the subregion. The basic idea is that each processor performs multigrid on its adaptive grid
using a mesh hierarchy suitable for adaptive meshes such as the one shown in Figure 3. The

Figure 1: Grid contained within one processor for a traditional two processor data distribution.

Figure 2: Grid contained within a processor for a full domain partition.

Figure 3: Full multigrid hierarchy for a single processor using full domain partition.

multigrid cycle of each processor is almost completely independent of other processors except for
communication on the finest level and coarsest level. This greatly improves the ratio of computation
to communication within each multigrid cycle. In [60], convergences rates comparable to standard
multigrid are obtained at much higher efficiencies using this full domain partition approach. In
[9, 10], these ideas are expanded upon to easily adapt and load balance an existing serial code
PLTMG [8] to a parallel environment in an efficient way. Most recently, [11, 57] have developed new
parallel algebraic multigrid solvers motivated by these ideas.

‡Semi-coarsening refers to coarsening the mesh only in some subset of coordinate directions. The idea is to not
coarsen in directions where smoothing is ineffective.

4

2.2.4 Parallel Multilevel Block LU Factorizations

Parallel multilevel algorithms have also been developed in the context of approximate block LU
factorizations. To illustrate the method with two levels, the variables in a matrix A is partitioned
into fine (f) and coarse (c) sets, and the approximate block LU factorization is

(

Aff Afc

Acf Acc

)

≈

(

Aff 0
Acf S

)(

I −P
0 I

)

where S is the Schur complement and P is an approximation to −A−1
ff Afc. The similarity to

multigrid methods is evident when [P, I]
T

is viewed as a prolongation operator, an approximation
to Aff is viewed as a smoother for the fine variables, and S is a suitable coarse grid matrix.

Parallel multilevel versions of this algorithm were first developed by choosing an independent
set of fine grid variables, i.e., Aff is diagonal, although actual parallel implementations were not
tested [66, 15, 16]. Practical parallel versions were then developed by using a domain decomposition
ordering of A, where Aff is block diagonal, possibly with multiple blocks per processor; see [56]
and the references therein. Each block represents a small aggregate, and the boundary between the
aggregates fall into the coarse grid. If Aff has general form, parallelism can be recovered by using
a sparse approximate inverse to approximate the inverse of Aff . See, for example, [28]. This is
equivalent to using a sparse approximate inverse smoother, to be discussed later.

3 Parallel Computation Issues

The remainder of this paper primarily considers parallelization of standard multigrid algorithms (as
opposed to those considered in the previous subsection). The main steps in developing multigrid
methods include: coarsening the fine grid (or fine matrix graph), choosing grid transfer operators to
move between meshes, determining the coarse mesh discretization matrices§, and finally developing
appropriate smoothers. Developing effective multigrid methods often boils down to striking a good
balance between setup times, convergence rates, and cost per iteration. These features in turn
depend on operator complexity, coarsening rates, and smoother effectiveness.

3.1 Complexity

3.1.1 Complexity Issues in Geometric Solvers

On sequential computers, complexity is not typically a concern for geometric multigrid methods.
In parallel, however, implementation issues can lead to large complexities, even for algorithms that
exhibit adequate parallelism.

As an illustrative example, consider the 3D SMG semi-coarsening multigrid method described
in [67]. This SMG method uses a combination of semi-coarsening and plane relaxation to achieve
a high degree of robustness. It is recursive, employing one V-cycle of a 2D SMG method to effect
the plane solves. The computational complexity of the method is larger than standard geometric
methods, but it is still optimal.

The storage costs for relaxation can be kept to O(N 2) in the sequential code, which is small
relative to the O(N3) original problem size, where N is the problem size along one dimension.
Alternatively, a faster solution time can be achieved by saving the coarse grid information for each
of the plane solves, but at the cost of O(N 3) storage for relaxation. In parallel, there is little
choice. The solution of one plane at a time in relaxation would incur a communication overhead
that is too great and that depends on N . To achieve reasonable scalability, all planes must be solved
simultaneously, which means an additional O(N 3) storage requirement for relaxation that more than
doubles the memory (see [24, 37]).

§The coarse grid discretization matrix in an algebraic multigrid method is usually generated by a Galerkin process—
the coarsening and grid transfer operators determine the coarse discretization operators.

5

Another parallel implementation issue in SMG that exacerbates the storage cost problem is
the use of ghost zones, which is simply the extra “layer” of data needed from another processor
to complete a processor’s computation. For parallel geometric methods, the use of ghost zones is
natural and widely used. It simplifies both implementation and maintainability, and leads to more
efficient computational kernels. However, because of the recursive nature of SMG and the need to
store all coarse-grid information in the plane solves, the ghost zone memory overhead is quite large
and depends logarithmically on N (see [37]).

3.1.2 Complexity Issues in Algebraic Solvers

For algebraic multigrid solvers, there are two types of complexities that need to be considered: the
operator complexity and the stencil size. The operator complexity is defined as the quotient of the
sum of the numbers of nonzeros of the matrices on all levels, Ai, i = 1, . . . ,M , (M levels) divided by
the number of nonzeros of the original matrix A1 = A. This measure indicates how much memory is
needed. If memory usage is a concern, it is important to keep this number small. It also affects the
number of operations per cycle in the solve phase. Small operator complexities lead to small cycle
times. The stencil size of a matrix is the average number of coefficients per row of Ai. While stencil
sizes of the original matrix are often small, it is possible to get very large stencil sizes on coarser
levels. Large stencil sizes can lead to large setup times, even if the operator complexity is small,
since various components, particularly coarsening and to some degree interpolation, require that
neighbors of neighbors are visited and so one might observe superlinear or even quadratic growth in
the number of operations when evaluating the coarse grid or the interpolation matrix. Large stencil
sizes can also increase parallel communication cost, since they might require the exchange of larger
sets of data.

Both convergence factors and complexities need to be considered when defining the coarsening
and interpolation procedures, as they often affect each other; increasing complexities can improve
convergence, and small complexities lead to a degradation in convergence. The user needs therefore
to decide his/her priority. Note that often a degradation in convergence due to low complexity can
be overcome or diminished by using the multigrid solver as a preconditioner for a Krylov method.

3.2 Coarsening

The parallelization of the coarsening procedure for geometric multigrid methods and block-structured
problems in the algebraic case are fairly straight-forward. On the other hand, the standard coarsening
algorithms for unstructured problems in algebraic multigrid are highly recursive and not suitable
for parallel computing. We first describe some issues for coarsening block-structured problems, and
then move on to unstructured problems.

3.2.1 Coarsening for Block-Structured Problems

Geometric multigrid methods have traditionally been discussed in the context of rectangular struc-
tured grids, i.e., Cartesian grids on a square in 2D or a cube in 3D (see, e.g., [32, 6, 7]). In this setting,
computing coarse grids in parallel is a trivial matter, and only the solution phase of the algorithm
is of interest. However, in the more general setting where grids are composed of arbitrary unions
of rectangular boxes such as those that arise in structured adaptive mesh refinement applications,
parallel algorithms for coarsening are important [37]. Here, a box is defined by a pair of indexes in
the 3D index-space (there is an obvious analogue for 2D), I = {(i, j, k) : i, j, k integers}. That is, a
box represents the “lower” and “upper” corner points of a subgrid via the indices (il, jl, kl) ∈ I and
(iu, ju, ku) ∈ I.

In the general setting of a parallel library of sparse linear solvers, the problem data has already
been distributed and is given to the solver library in its distributed form. On each processor, the
full description of each grid’s distribution is not needed, only the description of the subgrids that it
owns and their “nearest” neighboring subgrids. However, to compute this on all grid levels requires

6

that at least one of the processors—one containing a nonempty subgrid of the coarsest grid—has
information about the coarsening of every other subgrid. In other words, computing the full set of
coarse grids in the V -cycle requires global information.

Assume that we have already determined some appropriate neighbor information (at a cost of
log(P) communications), and consider the following two basic algorithms for coarsening, denoted
by A1 and A2. In A1, each processor coarsens the subgrids that it owns and receives neighbor
information from other processors. This requiresO(1) computations andO(log(N)) communications.
In A2, the coarsening procedure is replicated on all processors, which requires O(P) computations
and no communications. This latter approach works well for moderate numbers of processors, but
becomes prohibitive for large P . In particular, the latter approach also requires O(P) storage, which
may not be practical for machines with upwards of 100K processors such as BlueGene/L.

The performance of these two basic algorithms is discussed in more detail in [37], and results
are also presented that support the analysis. Algorithm A1 is much harder to implement than A2
because of the complexity of determining new nearest neighbor information on coarser grid levels
while storing only O(1) grid boxes.

3.2.2 Sequential Coarsening Strategies for Unstructured Problems

Before describing any parallel coarsening schemes, we will describe various sequential coarsening
schemes, since most parallel schemes build on these. There are basically two different ways of
choosing a coarse grid: “classical” coarsening [18, 65, 69], and coarsening by agglomeration [79].

Classical coarsening strives to separate all points i into either coarse points (C-points), which are
taken to the next level, and fine points (F -points), which are interpolated by the C-points. Since
most if not all matrix coefficients are equally important for the determination of the coarse grids,
one should only consider those matrix entries which are sufficiently large. Therefore only strong
connections are considered. A point i depends strongly on j, or conversely, j strongly influences i if

−aij ≥ θmax
k 6=i

(−aik) (2)

where θ is a small constant. In the classical coarsening process (which we will denote RS coarsening)
an attempt is made to fulfill the following two conditions. In order to restrict the size of the coarse
grid, condition (C1) should be fulfilled: the C-points should be a maximal independent subset of
all points, i.e. no two C-points are connected to each other, and if another C-point is added then
independence is lost. To ensure the quality of interpolation, a second condition (C2) needs to be
fulfilled: For each point j that strongly influences an F -point i, j is either a C-point or strongly
depends on a C-point k that also strongly influences i.

RS coarsening consists of two passes. In the first pass, which consists of a maximal independent
set algorithm, each point i is assigned a measure λi, which equals the number of points that are
strongly influenced by i. Then a point with a maximal λi (there usually will be several) is selected
as the first coarse point. Now all points that strongly depend on i become F -points. For all points
that strongly influence these new F -points, λj is incremented by the number of new F -points that j
strongly influences in order to increase j’s chances of becoming a C-point. This process is repeated
until all points are either C- or F -points. Since this first pass does not guarantee that condition (C2)
is satisfied, it is followed by a second pass, which examines all strong F -F connections for common
coarse neighbors. If (C2) is not satisfied new C-points are added.

Experience has shown that often the second pass generates too many C-points, causing large
complexities and inefficiency [69]. Therefore condition (C1) has been modified to condition (C1′):
C-points are not strongly connected to other C-points, and each point i needs to strongly depend
on at least one C-point j. Now just the first pass of the RS coarsening fulfills this requirement.
This method leads to better complexities, but worse convergence. Even though this approach often
decreases complexities significantly, complexities can still be quite high and require more memory
than desired. Allowing C-points to be even further apart leads to aggressive coarsening. This is
achieved by the following new definition of strength: A variable i is strongly n-connected w.r.t. (p,l)

7

to a variable j if at least p paths of lengths ≤ l exist such that i is strongly connected to j along
each of these paths in the previously defined sense. For further details see [69].

Coarsening by aggregation accumulates aggregates, which are the coarse “points” for the next
level. For the aggregation scheme, a matrix coefficient aij is dropped if the following condition is
fulfilled:

|aij | ≤ θ
√

|aiiajj |. (3)

The basic aggregation procedure consists of the following two phases. In the first pass, a root point
is picked that is not adjacent to any existing aggregate. Then the aggregate is defined by the root
point and all its neighbors. This procedure is repeated until all unaggregated points are adjacent
to an aggregate. In the second pass, all remaining unaggregated points are either integrated into
already existing aggregates or used to form new aggregates. Since root points are connected by
paths of length at least 3, this approach leads to a fast coarsening and small complexities. While
aggregation is fundamentally different from classical coarsening, many of the same concerns arise.
In particular, considerable care must be exercised in choosing root points to limit the number of
unaggregated points after the first pass. Further care must be exercised within the second pass
when deciding to create new aggregates and when determining what points should be placed within
which existing aggregate. If too many aggregates are created in this phase, complexities grow. If
aggregates are enlarged too much or have highly irregular shapes, convergence rates suffer.

3.2.3 Parallel Coarsening Strategies for Unstructured Problems

The most obvious approach to parallelize any of the coarsening schemes described in the previous
section is to partition all variables into subdomains, assign each processor a subdomain, coarsen the
variables on each subdomain using any of the methods described above, and find a way of dealing
with the variables that are located on the processor boundaries.

The easiest option, a decoupled coarsening scheme, i.e., just ignoring the processor boundaries,
is the most efficient one, since it requires no communication, but will most likely not produce a good
coarse grid. For the RS coarsening, it generally violates condition (C1) by generating strong F -F
connections without common coarse neighbors and leads to poor convergence [50]. While in practice
this approach might lead to fairly good results for coarsening by aggregation [76], it can produce
many aggregates near processor boundaries that are either smaller or larger than an ideal aggregate
and so lead to larger complexities or have a negative effect on convergence. Another disadvantage
of this approach is that it cannot have fewer coarse points or aggregates than processors, which can
lead to a large coarsest grid.

There are various ways of dealing with the variables on the boundaries. One possible way of
treating this problem—after one has performed both passes on each processor independently—is to
perform a third pass only on the processor boundary points which will add further C-points and thus
ensure that condition (C1) is fulfilled. This approach is called RS3 [50]. One of the disadvantages
of this approach is that this can generate C-point clusters on the boundaries, thus increasing stencil
sizes at the boundaries where in fact one would like to avoid C-points in order to keep communication
costs low.

Another parallel approach is subdomain blocking [55]. Here, coarsening starts with the processor
boundaries, and one then proceeds to coarsen the inside of the domains. Full subdomain blocking
is performed by making all boundary points coarse and then coarsening into the interior of the
subdomain by using any coarsening scheme, such as one pass of RS coarsening or any of the aggressive
coarsening schemes. Like RS3 coarsening, this scheme generates too many C-points on the boundary.
A method which avoids this problem is minimum subdomain blocking. This approach uses standard
coarsening on the boundaries and then coarsens the interior of the subdomains.

In the coupled aggregation method, aggregates are first built on the boundary. This step is not
completely parallel. When there are no more unaggregated points adjacent to an aggregate on the
processor boundaries, one can proceed to choose aggregates in the processor interiors, which can
be done in parallel. In the third phase, unaggregated points on the boundaries and in the interior

8

are swept into local aggregates. Finally, if there are any remaining points, new local aggregates
are formed. This process yields significantly better aggregates and does not limit the coarseness
of grids to the number of processors, see [76]. Another aggregation scheme suggested in [76] is
based on a parallel maximally independent set algorithm, since the goal is to find an initial set of
aggregates with as many points as possible with the restriction that no root point can be adjacent
to an existing aggregate. Maximizing the number of aggregates is equivalent to finding the largest
number of root points such that the distance between any two root points is at least three. This
can be accomplished by applying a parallel maximally independent set (MIS) algorithm, e.g., the
asynchronous distributed memory algorithm ADMMA [3], to the square of the matrix in the first
phase of the coupled aggregation scheme.

A parallel approach that is independent on the number of processors is suggested in [29, 50] for
classical coarsening. It is based on parallel independent set algorithms as described by Luby [58]
and Jones and Plassmann [52]. This algorithm, called CLJP coarsening, begins by generating global
measures as in RS coarsening, and then adding a random number between 0 and 1 to each measure,
thus making them distinct. It is now possible to find unique local maxima. The algorithm proceeds
as follows: If i is a local maximum, make i a C-point, eliminate the connections to all points j that
influence i and decrement j’s measure. (Thus rather than immediately turning C-point neighbors
into F -points, we increase their likelihood of becoming F -points. This combines the two passes of
RS coarsening into one pass.) Further, for any point j that depends on i, remove its connection
to i and examine all points k that depend on j to see whether they also depend on i. If i is a
common neighbor for both k and j decrement the measure of j and remove the edge connecting
k and j from the graph. If a measure gets smaller than 1, the point associated with it becomes
an F -point. This procedure does not require the existence of a coarse point in each processor as
the coarsening schemes above and thus coarsening does not slow down on the coarser levels. While
this approach works fairly well on truly unstructured grids, it often leads to C-point clusters and
fairly high complexities on structured grids. These appear to be caused by fulfilling condition (C1).
To reduce operator complexities, while keeping the property of being independent of the number of
processors, a new algorithm, the PMIS coarsening [33], has been developed that is more comparable
to using one pass of the RS coarsening. While it does not fulfill condition (C1), it fulfills condition
(C1′). PMIS coarsening begins just as the CLJP algorithm with distinct global measures, and sets
local maxima to be C-points. Then points that are influenced by C-points are made into F -points,
and are eliminated from the graph. This procedure will continue until all points are either C- or
F -points.

An approach which has shown to work quite well for structured problems is the following combi-
nation of the RS and the CLJP coarsening which is based on an idea by Falgout [50]. This coarsening
starts out as the decoupled RS coarsening, it then uses the C-points that have been generated in
this first step and are located in the interior of each processor and uses them as the first indepen-
dent set, i.e., they will all remain C-points and feeds them into the CLJP-algorithm. The resulting
coarsening will fill the boundaries with further C-points and possibly add a few in the interior of
the subdomains and satisfy condition (C1). A more aggressive scheme, which satisfies condition
(C1’), and uses the same idea, is the HMIS coarsening [33]. It performs only the first pass of the RS
coarsening to generate the first independent set, which then is used by the PMIS algorithm.

Another approach is to color the processors so that subdomains of the same color are not con-
nected to each other. Then all these subdomains can be coarsened independently. This approach
can be very inefficient since it might lead to many idle processors. An efficient implementation that
builds on this approach can be found in [53]. Here the number of colors is restricted to nc, i.e.,
processors with color numbers higher than nc are assigned the color nc. Good results were achieved
using only two colors on the finest level, but allowing more colors on coarser levels.

3.3 Smoothers

Except for damped Jacobi smoothing, traditional smoothers such as Gauß-Seidel are inherently
sequential. In this section, we describe some alternatives that have been developed that have better

9

parallel properties.

3.3.1 Multicolor Gauß-Seidel

One of the most popular smoother choices for multigrid is Gauß-Seidel relaxation, which is a special
case of successive over relaxation (SOR) [85]. Although Gauß-Seidel is apparently sequential in
nature, one method for exposing parallelism is to use multicoloring. In this approach, the unknown
indices are partitioned into disjoint sets U1, . . . , Uk. Each set is thought of as having a distinct
color. Let A = (aij). Each set Ul has the property that if i, j ∈ Ul, then aij = aji = 0, i.e,. the
equation for unknown i does not involve unknown j, and vice-versa. Unknowns in the same set can
be updated independently of each another. Hence, the unknowns of single color can be updated in
parallel. In addition to imparting parallelism, reordering the unknowns changes the effectiveness of
Gauß-Seidel as a smoother or as a solver. We note that an appropriate ordering depends on the
underlying problem.

Much of the literature approaches multicoloring from the viewpoint of using Gauß-Seidel as
either a preconditioner to a Krylov method or as the main solver. The underlying ideas, however,
are applicable in the context of smoothing. Multicoloring to achieve parallelism for compact stencils
on structured grids has been studied extensively. Perhaps the best known instance of multicolor
Gauß-Seidel is the use of two colors for the 5-point Laplace stencil, i.e., red-black Gauß-Seidel [36].
For a rigorous analysis of red-black Gauß-Seidel as a smoother, see for instance [84, 80]. For the
9-point Laplacian, four colors are sufficient to expose parallelism. See [1, 2], for example. Adams
and Jordan [1] analyze multicolor SOR and show that for certain colorings the iteration matrix has
the same convergence rate as the iteration matrix associated with the natural lexicographic ordering.

Multicoloring can also be extended to block or line smoothing. Multiple unknowns in a line
or block of the computational grid are treated as one unknown and updated simultaneously. Each
block is assigned a color in such a way that all the blocks of one color have no dependencies on one
another. Because multiple unknowns are updated simultaneously, parallel block smoothing tends to
have less interprocessor communication than an exact point Gauß-Seidel method. The convergence
rate of multigrid using multicolor block Gauß-Seidel, however, depends on the underlying problem.
For a problem without strongly varying coefficients, the convergence rate will tend to be worse than
point Gauß-Seidel. For strongly anisotropic problems, however, line smoothing may be necessary
for acceptable multigrid convergence.

Block et al. [14], among others, discusses multicolor block Gauß-Seidel as a solver, and provides
numerical evidence that the communication overhead is lower for multicolor block Gauß-Seidel.
O’Leary [64] shows that for stencils that rely only on eight or fewer nearest neighbors, block colorings
exist such that the convergence rate is at least as good as lexicographic ordering. Two color line
Gauß-Seidel as a smoother is analyzed in [80].

For unstructured grids, multicoloring can be problematic, as potentially many more colors may
be necessary. Adams [4] has implemented a parallel true Gauß-Seidel (i.e., no stale off-processor
values) and has shown it to be effective on large 3D unstructured elasticity problems.

3.3.2 Hybrid Gauß-Seidel with Relaxation Weights

The easiest way to implement any smoother in parallel is to just use it independently on each
processor, exchanging boundary information after each iteration. We will call such a smoother a
hybrid smoother. If we use the following terminology for our relaxation scheme:

un+1 = un +Q−1(f −Aun), (4)

Q would be a block diagonal matrix with p diagonal blocks Qk, k = 1, ..., p for a computer with p
processors. For example, if one applies this approach to Gauß-Seidel, Qk are lower triangular ma-
trices (we call this particular smoother hybrid Gauß-Seidel; it has also been referred to as Processor
Block Gauß-Seidel [5]). While this approach is easy to implement, it has the disadvantage of being
more similar to a block Jacobi method, albeit worse, since the block systems are not solved exactly.

10

Block Jacobi methods can converge poorly or even diverge unless used with a suitable damping
parameter. Additionally, this approach is not scalable, since the number of blocks increases with the
number of processors and with it the number of iterations increases. In spite of this, good results
can be achieved by setting Q = 1/ω Q̃ and choosing a suitable relaxation parameter ω. Finding
good parameters is not easy and is made even harder by the fact that in a multilevel scheme one
deals with a new system on each level, requiring new parameters. It is therefore important to find
an automatic procedure to evaluate these parameters. Such a procedure has been developed for
symmetric positive problems and smoothers in [83] using convergence theory for regular splittings.
A good smoothing parameter for a positive symmetric matrix A is ω = 1/λmax(Q̃

−1A), where λmax

denotes the maximal eigenvalue of A. A good estimate for this value can be obtained by using a
few relaxation steps of Lanczos or conjugate gradient preconditioned with Q. In [19] this procedure
was applied to hybrid symmetric Gauß-Seidel smoothers within smoothed aggregation. Using the
resulting preconditioner to solve several structural mechanics problems led to scalable convergence.

This automatic procedure can also be applied to determine smoothing parameters for any sym-
metric positive definite hybrid smoother, such as hybrid symmetric Gauß-Seidel, Jacobi, Schwarz
smoothers or symmetric positive definite variants of sparse approximate inverse or incomplete
Cholesky smoothers.

3.3.3 Polynomial Smoothing

While polynomials have long been used as preconditioners, they have not been as widely used as
smoothers in multigrid. The computational kernel of a polynomial is the matrix-vector multiply,
which means its effectiveness as a smoother does not degrade as the number of processors increases.

One of the major problems associated with traditional polynomial iterative methods and precon-
ditioners is that it is necessary to have the extremal eigenvalues of the system available. While an
estimate of the largest eigenvalue is easily available via either Gershgorin’s theorem or a few Lanczos
steps, estimating the smallest eigenvalue is more problematic. However, when polynomial methods
are used as smoothers this smallest eigenvalue is not really necessary, as only high energy error
needs to be damped. Thus, it is often sufficient to take the smallest eigenvalue as a fraction of the
largest eigenvalue. Experience has shown that this fraction can be chosen to be the coarsening rate
(the ratio of the number of coarse grid unknowns to fine grid unknowns), meaning more aggressive
coarsening requires the smoother to address a larger range of high frequencies [5].

Brezina analyzes the use of a polynomial smoother, called MLS smoothing, in the context of
smoothed aggregation [20]. This smoother is essentially a combination of two transformed Chebychev
polynomials, which are constructed so as to complement one another on the high energy error
components [21]. Further analysis can be found in [77, 78].

Adams et al. propose the use of Chebychev polynomials as smoothers in [5]. They show that
such smoothers can often be competitive with Gauß-Seidel on serial architectures. These results are
different from earlier experiences with Gauß-Seidel and polynomial methods. These differences arise
from unstructured mesh considerations, cache effects, and carefully taking advantage of zero initial
guesses¶. In their parallel experiments, better timings were achieved with polynomial smoothers
than with basic hybrid Gauß-Seidel smoothers.

3.3.4 Sparse Approximate Inverse Smoothing

A sparse approximate inverse is a sparse approximation to the inverse of a matrix. A sparse ap-
proximate inverse can be used as a smoother, and can be applied easily in parallel as a sparse
matrix-vector product, rather than a triangular solve, for instance. Sparse approximate inverses
only have local couplings, making them suitable as smoothers. Other advantages are that more
accurate sparse approximate inverse smoothers can be used for more difficult problems, and their
performance is not dependent on the ordering of the variables. A drawback of these methods is the

¶The initial guess on the coarse grids is typically zero within a V-cycle. Further, when multigrid is used as a
preconditioner, the initial guess is identically zero on the finest mesh.

11

relatively high cost of constructing sparse approximate inverses in the general case, compared to the
almost negligible cost of setting up Gauß-Seidel. Most studies have focused on very sparse versions
that are cheaper to construct.

One common form of the sparse approximate inverse can also be computed easily in parallel.
To compute a sparse approximate inverse M for the matrix A, this form minimizes the Frobenius
norm of the residual matrix (I −MA). This can be accomplished in parallel because the objective
function can be decoupled as the sum of the squares of the 2-norms of the individual rows

‖I −MA‖2F =

n
∑

i=1

‖eT
i −mT

i A‖
2
2

in which eT
i and mT

i are the ith rows of the identity matrix and of the matrix M , respectively. Thus,
minimizing the above expression is equivalent to minimizing the individual functions

‖eT
i −mT

i A‖2, i = 1, 2, . . . , n.

If no restriction is placed on M , the exact inverse will be found. To find an economical sparse
approximation, each row in M is constrained to be sparse. A right approximate inverse may be
computed by minimizing ‖I − AM‖2F . The left approximate inverse described above, however, is
amenable to the common distribution of parallel matrices by rows.

Sparse approximate inverse smoothers were first proposed by Benson [13] in 1990. Tang and
Wan [71] discuss the choice of sparsity pattern and least-squares problem to solve to reduce the
cost of the smoother. They also analyzed the smoothing factor for constant coefficient PDEs on a
two-dimensional regular grid. Some additional theoretical results are given in [23], including for a
diagonal approximate inverse smoother, which may be preferable over damped Jacobi. Experimental
results in the algebraic multigrid context are given in [22]. Although none of these studies used
parallel implementations, parallel implementations of sparse approximate inverses are available [27].

3.4 Coarse Grid Parallelism

The solver on the coarsest grid can limit the ultimate speedup that can be attained in a parallel
computation, for two related reasons. First, the operator at this level is generally small, and the
time required for communication may be higher than the time required to perform the solve on a
single processor. Second, the coarsest grid operator may couple all pieces of the global problem (i.e.,
it is dense, or nearly dense), and thus global communication of the right-hand side or other data
may be necessary. For these reasons, parallel multigrid solvers often minimize the time spent on
coarse grids, i.e., W-cycles and FMG are avoided.

The coarse grid solver may be a direct solver, an iterative solver, or a multiplication with the
full inverse. These will be covered briefly in this subsection. Generally, the parallel performance of
the setup or factorization stage of the solver is unimportant, since this phase will be amortized over
several solves.

A direct solver is perhaps most often used for the coarsest grid problem. However, the solves with
the triangular factors are well-known to be very sequential. If the problem is small enough, instead
of solving in parallel, the coarsest grid problem may be factored and solved on a single processor,
with the right-hand side gathered, and the solution scattered to the other processors. The other
processors may do useful work during this computation. If the other processors have no work and
would remain idle, a better option is to solve the coarsest grid problem on all processors. This
redundant form of the calculation does not require communication to distribute the result. For an
analysis, see [44].

If the coarsest grid problem is too large to fit on a single processor, then there is no choice but
to do a parallel computation. However, the communication complexity can be reduced by solving
with only a subset of the processors. Solving redundantly with a subset of the processors is again
an option. We note that for difficult problems the final coarse grid may be chosen to be very large,
as the error to be reduced becomes more poorly represented on the coarser grids.

12

Iterative methods for the coarsest grid solve are less sequential, requiring matrix-vector products
for each solve. However, since the matrices are quite dense, it is important that very few iterations
are required, or the accumulation of communication costs can become very high. To this end,
preconditioning may be used, especially since the cost of constructing the preconditioner will be
amortized. Similarly, it is advantageous to exploit previous solves with the same matrix, e.g.,
Krylov subspace vectors from previous solves may be used as an initial approximation space, e.g.,
[38].

If the coarse grid problems are small enough, another solution strategy is to first compute the
inverse of the coarse grid matrix [46, 45]. Each processor stores a portion of the inverse and computes
the portion of the solution it requires. The communication in the solution phase requires the right-
hand side to be collected at each processor. However, since the inverses are dense, storage will limit
the applicability of this method. To alleviate this problem, Fischer [39] has proposed computing a
sparse factorization of the inverse of the coarse grid matrix, A−1

c = XXT . The factor X is computed
via an A-orthogonalization process, and remains sparse if the order of orthogonalization is chosen
according to a nested-dissection ordering. Parallel results with this method were reported in [73, 74].

4 Concluding Remarks

We have considered a few of the main research topics associated with the parallelization of multigrid
algorithms. These include traditional sources of parallelism such as spatial partitioning as well as
non-traditional means of increasing parallelism via multiple coarse grids, concurrent smoothing iter-
ations, and full domain partitioning. We have discussed parallel coarsening and operator complexity
issues that arise in both classical algebraic multigrid and agglomeration approaches. Finally, we
have discussed parallel smoothers and the coarsest grid solution strategy.

References

[1] L. M. Adams and H. F. Jordan. Is SOR color-blind? SIAM J. Sci. Statist. Comput., 7(2):490–
506, 1986.

[2] L. M. Adams, R. J. Leveque, and D. M. Young. Analysis of the SOR iteration for the 9-point
Laplacian. SIAM J. Numer. Anal., 25(5):1156–1180, October 1988.

[3] M. F. Adams. A parallel maximal independent set algorithm. In Proceedings of the 5th Copper
Mountain Conference on Iterative Methods, 1998.

[4] M. F. Adams. A distributed memory unstructured Gauss-Seidel algorithm for multigrid
smoothers. In ACM/IEEE Proceedings of SC2001: High Performance Networking and Com-
puting, 2001.

[5] M. F. Adams, M. Brezina, J. Hu, and R. Tuminaro. Parallel multigrid smoothing: polynomial
versus Gauss-Seidel. Journal of Computational Physics, 188:593–610, 2003.

[6] S. F. Ashby and R. D. Falgout. A parallel multigrid preconditioned conjugate gradient algorithm
for groundwater flow simulations. Nuclear Science and Engineering, 124(1):145–159, September
1996. Also available as LLNL Technical Report UCRL-JC-122359.

[7] V. Bandy, J. Dendy, and W. Spangenberg. Some multigrid algorithms for elliptic problems on
data parallel machines. SIAM J. Sci. Stat. Comp., 19(1):74–86, 1998.

[8] R. Bank. PLTMG:A Software Package for Solving Elliptic Partial Differential Equations:User’s
Guide, 8.0. SIAM, Philadelphia, 1998.

[9] R. Bank and M. Holst. A new paradigm for parallel adaptive meshing algorithms. SIAM J.
Sci. Stat. Comp., 22:1411–1443, 2000.

13

[10] R. Bank and M. Holst. A new paradigm for parallel adaptive meshing algorithms. SIAM
Review, 45:291–323, 2003.

[11] R. Bank, S. Lu, C. Tong, and P. Vassilevski. Scalable parallel algebraic multigrid solvers.
Technical report, University of California at San Diego, 2004.

[12] P. Bastian, W. Hackbusch, and G. Wittum. Additive and multiplicative multi-grid – a com-
parison. Computing, 60:345–364, 1998.

[13] M. W. Benson. Frequency domain behavior of a set of parallel multigrid smoothing operators.
International Journal of Computer Mathematics, 36:77–88, 1990.

[14] U. Block, A. Frommer, and G. Mayer. Block colouring schemes for the SOR method on local
memory parallel computers. Parallel Computing, 14:61–75, 1990.

[15] E. F. F. Botta, A. van der Ploeg, and F. W. Wubs. Nested grids ILU-decomposition (NGILU).
J. Comput. Appl. Math., 66:515–526, 1996.

[16] E. F. F. Botta and F. W. Wubs. Matrix Renumbering ILU: An effective algebraic multilevel
ILU preconditioner for sparse matrices. SIAM J. Matrix Anal. Appl., 20:1007–1026, 1999.

[17] J. Bramble, J. Pasciak, and J. Xu. Parallel multilevel preconditioners. Math. Comp., 55:1–22,
1990.

[18] A. Brandt, S. F. McCormick, and J. W. Ruge. Algebraic multigrid (AMG) for sparse matrix
equations. In D. J. Evans, editor, Sparsity and Its Applications. Cambridge University Press,
1984.

[19] M. Brezina, , C. Tong, and R. Becker. Parallel algebraic multigrids for structural mechanics.
SIAM Journal of Scientific Computing, submitted, 2004. Also available as LLNL technical
report UCRL-JRNL-204167.

[20] M. Brezina. Robust iterative solvers on unstructured meshes. PhD thesis, University of Colorado
at Denver, Denver, CO, USA, 1997.

[21] M. Brezina, C. Heberton, J. Mandel, and P. Vaněk. An iterative method with convergence rate
chosen a priori. Technical Report UCD/CCM Report 140, University of Colorado at Denver,
1999.

[22] O. Bröker and M. J. Grote. Sparse approximate inverse smoothers for geometric and algebraic
multigrid. Applied Numerical Mathematics, 41:61–80, 2002.

[23] O. Bröker, M. J. Grote, C. Mayer, and A. Reusken. Robust parallel smoothing for multigrid
via sparse approximate inverses. SIAM Journal on Scientific Computing, 23:1396–1417, 2001.

[24] P. N. Brown, R. D. Falgout, and J. E. Jones. Semicoarsening multigrid on distributed memory
machines. SIAM J. Sci. Comput., 21(5):1823–1834, 2000. Special issue on the Fifth Copper
Mountain Conference on Iterative Methods. Also available as LLNL technical report UCRL-
JC-130720.

[25] T. Chan and R. Tuminaro. Analysis of a parallel multigrid algorithm. In S. McCormick, editor,
Proceedings of the Fourth Copper Mountain Conference on Multigrid Methods, NY, 1987. Marcel
Dekker.

[26] T. Chan and R. Tuminaro. A survey of parallel multigrid algorithms. In A. Noor, editor,
Proceedings of the ASME Syposium on Parallel Computations and their Impact on Mechanics,
volume AMD-Vol. 86, pages 155–170. The American Society of Mechanical Engineers, 1987.

14

[27] E. Chow. Parallel implementation and practical use of sparse approximate inverses with a priori
sparsity patterns. Intl. J. High Perf. Comput. Appl., 15:56–74, 2001.

[28] E. Chow and P. S. Vassilevski. Multilevel block factorizations in generalized hierarachical bases.
Num. Lin. Alg. Appl., 10:105–127, 2003.

[29] A. J. Cleary, R. D. Falgout, V. E. Henson, and J. E. Jones. Coarse-grid selection for parallel
algebraic multigrid. In Proc. of the Fifth International Symposium on: Solving Irregularly
Structured Problems in Parallel, volume 1457 of Lecture Notes in Computer Science, pages
104–115, New York, 1998. Springer–Verlag.

[30] J. Dendy. Revenge of the semicoarsening frequency decomposition method. SIAM J. Sci. Stat.
Comp., 18:430–440, 1997.

[31] J. Dendy and C. Tazartes. Grandchild of the frequency decomposition method. SIAM J. Sci.
Stat. Comp., 16:307–319, 1995.

[32] J. E. Dendy, M. P. Ida, and J. M. Rutledge. A semicoarsening multigrid algorithm for SIMD
machines. SIAM J. Sci. Stat. Comput., 13:1460–1469, 1992.

[33] H. DeSterck and U. M. Yang. Reducing complexity in AMG. Technical report, Lawrence
Livermore National Laboratory, 2004.

[34] K. Devine, B. Hendrickson, E. Boman, M. St. John, and C. Vaughan. Zoltan: A dynamic
load-balancing library for parallel applications; user’s guide. Technical Report SAND99-1377,
Sandia National Laboratories, 1999.

[35] C. Douglas and W. Miranker. Constructive interference in parallel algorithms. SIAM Journal
on Numerical Analysis, 25:376–398, 1988.

[36] D. J. Evans. Parallel S.O.R. iterative methods. Parallel Computing, 1:3–18, 1984.

[37] R. D. Falgout and J. E. Jones. Multigrid on massively parallel architectures. In E. Dick,
K. Riemslagh, and J. Vierendeels, editors, Multigrid Methods VI, volume 14 of Lecture Notes
in Computational Science and Engineering, pages 101–107. Springer–Verlag, 2000.

[38] C. Farhat and P. S. Chen. Tailoring domain decomposition methods for efficient parallel coarse
grid solution and for systems with many right hand sides. Contemporary Mathematics, 180:401–
406, 1994.

[39] P. F. Fischer. Parallel multi-level solvers for spectral element methods. In R. Scott, editor,
Proceedings of International Conference on Spectral and High Order Methods ’95, pages 595–
604, 1996.

[40] L. Fournier and S. Lanteri. Multiplicative and additive parallel multigrid algorithms for the
acceleration of compressible flow computations on unstructured meshes. Applied Numerical
Mathematics, 36(4):401–426, 2001.

[41] P. Frederickson and O. McBryan. Parallel superconvergent multigrid. In S. McCormick, editor,
Proceedings of the Third Copper Mountain Conference on Multigrid Methods, pages 195–210,
NY, 1987. Marcel Dekker.

[42] D. Gannon and J. Van Rosendale. On the structure of parallelism in a highly concurrent PDE
solver. Journal of Parallel and Distributed Computing, 3:106–135, 1986.

[43] A. Greenbaum. A multigrid method for multiprocessors. In S. McCormick, editor, Proceedings
of the Second Copper Mountain Conference on Multigrid Methods, volume 19 of Appl. Math
and Computation, pages 75–88, 1986.

15

[44] W. D. Gropp. Parallel computing and domain decomposition. In T. F. Chan, D. E. Keyes, G. A.
Meurant, J. S. Scroggs, and R. G. Voigt, editors, Fifth Conference on Domain Decomposition
Methods for Partial Differential Equations, pages 349–362. SIAM, 1992.

[45] W. D. Gropp and D. E. Keyes. Domain decomposition methods in computational fluid dynam-
ics. International Journal for Numerical Methods in Fluids, 14:147–165, 1992.

[46] W. D. Gropp and D. E. Keyes. Domain decomposition with local mesh refinement. SIAM
Journal on Scientific and Statistical Computing, 15:967–993, 1992.

[47] W. Hackbusch. A new approach to robust multi-grid methods. In First International Conference
on Industrial and Applied Mathematics, Paris, 1987.

[48] W. Hackbusch. The frequency decomposition multigrid method, part I: Application to
anisotropic equaitons. Numer. Math., 56:229–245, 1989.

[49] B. Hendrickson and R. Leland. A user’s guide to Chaco, Version 1.0. Technical Report SAND93-
2339, Sandia National Laboratories, 1993.

[50] V. E. Henson and U. M. Yang. BoomerAMG: a parallel algebraic multigrid solver and precon-
ditioner. Applied Numerical Mathematics, 41:155–177, 2002.

[51] J. E. Jones and S. F. McCormick. Parallel multigrid methods. In Keyes, Sameh, and Venkatakr-
ishnan, editors, Parallel Numerical Algorithms, pages 203–224. Kluwer Academic, 1997.

[52] M. Jones and P. Plassmann. A parallel graph coloring heuristic. SIAM J. Sci. Comput., 14:654–
669, 1993.

[53] W. Joubert and J. Cullum. Scalable algebraic multigrid on 3500 processors. Electronic Trans-
actions on Numerical Analysis, submitted, 2003. Los Alamos National Laboartory Technical
Report No. LAUR03-568.

[54] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. Technical
Report 95-064, Army HPC Research Center Technical Report, 1995.

[55] A. Krechel and K. Stüben. Parallel algebraic multigrid based on subdomain blocking. Parallel
Computing, 27:1009–1031, 2001.

[56] Z. Li, Y. Saad, and M. Sosonkina. pARMS: a parallel version of the algebraic recursive multilevel
solver. Numerical Linear Algebra with Applications, 10:485–509, 2003.

[57] S. Lu. Scalable Parallel Multilevel Algorithms for Solving Partial Differential Equations. PhD
thesis, University of California at San Diego, 2004.

[58] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J. on
Computing, 15:1036–1053, 1986.

[59] D. J. Mavriplis. Parallel performance investigations of an unstructured mesh Navier-Stokes
solver. Intl. J. High Perf. Comput. Appl., 16:395–407, 2002.

[60] W. Mitchell. A parallel multigrid method using the full domain partition. Electron. Trans.
Numer. Anal., 6:224–233, 1998.

[61] W. Mitchell. Parallel adaptive multilevel methods with full domain partitions. App. Num.
Anal. and Comp. Math., 1:36–48, 2004.

[62] W. Mulder. A new multigrid approach to convection problems. J. Comput. Phys., 83:303–329,
1989.

16

[63] N. Naik and J. Van Rosendale. The improved robustness of multigrid solvers based on multiple
semicoarsened grids. SIAM J. Numer. Anal., 30:215–229, 1993.

[64] D. P. O’Leary. Ordering schemes for parallel processing of certain mesh problems. SIAM J.
Sci. Stat. Comp., 5:620–632, 1984.

[65] J. W. Ruge and K. Stüben. Algebraic multigrid (AMG). In S. F. McCormick, editor, Multigrid
Methods, volume 3 of Frontiers in Applied Mathematics, pages 73–130. SIAM, Philadelphia,
PA, 1987.

[66] Y. Saad. ILUM: A multi-elimination ILU preconditioner for general sparse matrices. SIAM J.
Sci. Comput., 17:830–847, 1996.

[67] S. Schaffer. A semi-coarsening multigrid method for elliptic partial differential equations with
highly discontinuous and anisotropic coefficients. SIAM J. Sci. Comput., 20(1):228–242, 1998.

[68] B. Smith, P. Bjorstad, and W. Gropp. Domain Decomposition: Parallel Multilevel Methods for
Elliptic Partial Differential Equations. Cambridge University Press, 1996.

[69] K. Stüben. Algebraic multigrid (AMG): an introduction with applications. In A. Schüller
U. Trottenberg, C. Oosterlee, editor, Multigrid. Academic Press, 2000.

[70] J. Swisshelm, G. Johnson, and S. Kumar. Parallel computation of Euler and Navier-Stokes
flows. In S. McCormick, editor, Proceedings of the Second Copper Mountain Conference on
Multigrid Methods, volume 19 of Appl. Math. and Computation, pages 321–331, 1986.

[71] W.-P. Tang and W. L. Wan. Sparse approximate inverse smoother for multigrid. SIAM Journal
on Matrix Analysis and Applications, 21:1236–1252, 2000.

[72] U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Academic Press, 2000.

[73] H. M. Tufo and P. F. Fischer. Terascale spectral element algorithms and implementations. In
Proceedings of SC99, 1999.

[74] H. M. Tufo and P. F. Fischer. Fast parallel direct solvers for coarse grid problems. J. Par. &
Dist. Computing, 61:151–177, 2001.

[75] R. Tuminaro. A highly parallel multigrid-like algorithm for the Euler equations. SIAM J. Sci.
Comput., 13(1), 1992.

[76] R. Tuminaro and C. Tong. Parallel smoothed aggregation multigrid: aggregation strategies on
massively parallel machines. In J. Donnelley, editor, Supercomputing 2000 Proceedings, 2000.

[77] P. Vaněk, M. Brezina, and J. Mandel. Convergence of algebraic multigrid based on smoothed
aggregation. Numerische Mathematik, 88:559–579, 2001.

[78] P. Vaněk, M. Brezina, and R. Tezaur. Two-grid method for linear elasticity on unstructured
meshes. SIAM J. Sci. Comp., 21:900–923, 1999.

[79] P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid based on smoothed aggregation for
second and fourth order problems. Computing, 56:179–196, 1996.

[80] P. Wesseling. An Introduction to Multigrid Methods. John Wiley & Sons, Chichester, 1992.
Reprinted by R.T. Edwards, Inc., 2004.

[81] S. Xiao and D. Young. Multiple coarse grid multigrid methods for solving elliptic problems.
In N. Melson, T. Manteuffel, and S. McCormick C. Douglas, editors, Proceedings of the Sev-
enth Copper Mountain Conference on Multigrid Methods, volume 3339 of NASA Conference
Publication, pages 771–791, 1996.

17

[82] J. Xu. Theory of Multilevel Methods. PhD thesis, Cornell University, 1987.

[83] U. M. Yang. On the use of relaxation parameters in hybrid smoothers. Numerical Linear
Algebra with Applications, 11:155–172, 2004.

[84] I. Yavneh. On red-black SOR smoothing in multigrid. SIAM J. Sci. Comp., 17:180–192, 1996.

[85] D. M. Young. Iterative Methods for Solving Partial Difference Equations of Elliptic Type. PhD
thesis, Harvard University, Cambridge, MA, USA, May 1950.

[86] H. Yserentant. On the multi-level splitting of finite element spaces. Numer. Math., 49:379–412,
1986.

18

